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1 Overview and Goals

The goal of our project is to create an optical music recognition (OMR) system that will transform the
images of the International Score Library Project (IMSLP) into symbolic music representations — encodings
that express music at the note level in a manner analogous to character-encoded text. Symbolic music rep-
resentations enable music to be automatically searched, transformed, analyzed, and classified, however, very
little music is currently available in symbolic form, thus preventing music from fully joining the information
revolution of the current century. OMR is the obvious key to developing symbolic music databases since
music scores (unlike audio) directly express the core information we seek (discrete pitch and musical time,
parts, etc.). Furthermore, with the advent of the IMSLP, our goal is especially timely. The IMSLP is a
rapidly growing website, currently containing about 140,000 classical, public domain music scores, mostly
in pdf format. Many musicians make daily connect with the library, while its use has become progressively
more mainstream — it is quite possible that the IMSLP will be the world’s “main” library for public do-
main music in the future. The IMSLP’s large score collection implores our music informatics community
to harvest this potential gold mine of symbolic data. However, the IMSLP provides an equally important,
though less tangible resource. The library is supported by a seemingly altruistic community of musicians
whose common goal is the widespread sharing of music. Since the construction of symbolic music libraries
will never be completely “solved” through OMR, we hope to leverage the enthusiasm and generous spirit of
this community. Specifically, we hope IMSLP community will adopt the open-source software we will create,
providing the human-guidance necessary to create high-quality symbolic music scores.

Various OMR efforts have been scattered throughout the last half century, including a great many
(mostly short-lived) academic efforts and about a dozen commercial systems. In spite of the many efforts
involved, the state of the art is not nearly good enough to address the challenge posed by the IMSLP. While
current systems often perform reasonably well in the “laboratory,” the realities of “in vivo” experiments
(image degradation, imperfect scanning, the variety of music fonts, the inevitable overlap and occlusion of
symbols, the long-tailed distribution of possible musical symbols and conventions, etc.) frequently confound
these systems. Our approach will significantly extend the state of the art through a combination of three
ingredients: better recognition science, sustained effort, and reframing the basic problem, as follows.

Better Recognition Science From a scientific vantage point, existing OMR approaches do not make the
obvious connections to the last few decades of research in optical character recognition (OCR) and
speech recognition. Both of these parallel fields rely on computational paradigms ideally suited to
the one-dimensional nature of OCR data (lines of text) and speech (sequence data). While these
ideas cannot be adapted wholesale to OMR, they carry a highly relevant core of modeling techniques
and associated algorithms. Our initial efforts in OMR have been highly successful in developing core
methodology that leverages this existing scientific knowledge. The PI’s experience as a former OCR
researcher facilitates this process. In addition we have introduced new ideas to deal with the many
challenging aspects of OMR not addressed in parallel recognition areas, such as its fundamentally
two-dimensional nature.
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Sustained Effort An OMR system that tackles the grand challenge presented by the IMSLP will, of course,
not be built overnight. In fact, most past OMR approaches have met with limited success partly due
to the limited scope of their efforts. In many cases, this is justified by a legitimate focus on recognition
science rather than practical results. In contrast, our aim is to build a working system that will be
adopted in practice by the IMSLP community to accomplish our shared goals. Our project has been
pursued with this long-term vision in mind, focusing initial efforts on the foundation that will support
much continued work.

Involving Human Input The “good news” for OMR is that music notation begins with a rather simple
core of notational conventions for expressing pitch and rhythm that account for the majority of ink on
the page. These conventions are, for the most part, consistently followed throughout “common music
notation.” However, heaped on top of these conventions are several centuries worth of modifications,
some common (articulations, bowing, fingering, trills, dynamics, pedaling, arpeggiations, repeats and
2nd endings, etc.), some less so (harmonics, stops in brass instruments, glissandi, tremolo, flutter
tonguing, multiphonics, breath marks, turns, mordants, etc.). Furthermore, explicitly allowing for the
great many rare cases only invites trouble from a recognition perspective, as these rare possibilities
will inevitably be identified in unwanted locations. In this light, it is not reasonable to expect that an
entirely automatic approach can “solve” OMR.

Commercial systems deal with this situation by isolating the recognition process, first performing black-
box recognition, and then delivering the results for correction through a score-writing program such
as Sibelius or Finale. In contrast, we (and other OMR researchers) believe a better solution involves
the user as a partner in the recognition process. The user can “bless” correctly identified symbols,
allowing the system to automatically improve its performance using these validated results as training
examples. The user can identify the existence of symbols outside of the recognizer’s core vocabulary,
thus extending the vocabulary when appropriate while providing training examples. Additionally, the
user can identify errors and allow the system to re-recognize subject to user-imposed constraints (e.g.
this pixel lies within a note stem). Of course, in the most uncooperative cases the user can simply
“tell” the computer the right answer, as with score-writing programs. Thus, building an interface that
allows the user to participate in the recognition process is part of our challenge. During this last year
we have created some simple IU tools in this direction, though most of this task still lies before us.

In short, we have a highly ambitious vision for OMR — far more than can be accomplished in a year or
two. The remainder of this document describes the specific progress we have made over the course of the
year. Some of the most important accomplishments are scientific or algorithmic in nature. In these cases we
describe the essence of the results and why they are important, while referencing a more technical discussion.
We will present both qualitative and quantitative recognition results. We also describe current and future
directions.

2 Our State of the Art

Our vision for OMR is highly ambitions, including the development of core recognition technology for music,
automatic adaptation of the system, developing the target symbolic representation, while integrating these
elements into a system that allows a user to guide and correct the process in an efficient manner. While
none of these tasks are “completed” — each one is a multi-year endeavor in its own right — we have
made significant progress on the the core recognizer and its automatic adaptation, with some important
development of ideas regarding symbolic representation, and some modest results toward a user interface.
The remainder of this section explains our state of the art, highlighting the accomplishments over the last
year of effort.

2.1 Page Structure

Before receiving this grant we had made significant progress in identifying the overall structure of a page
of music. Similar structural decompositions form the first stage of every OMR approach we know. Our
prior work in this area identifies the staves in a page of music, grouping these staves into systems, while
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identifying measures for each system. While this work contains some original insights, it shares much with
the many existing approaches, and is prerequisite for delving deeper into OMR. Though we have not tested
this approach broadly yet, it performs well on the limited data we have tried. Consequently, we believe
that structural identification is not the the most challenging aspect of OMR, while many approaches may
produce satisfactory results here. In contrast, the core recognition engine, constituting our main focus under
the period of this grant, is a highly challenging task with many potential pitfalls and chances for creative
contribution.

2.2 Measure Recognition

2.2.1 Top-Down Recognition of Composite Symbols

Having located the measures through our structural decomposition, we proceed to identify the contents of
these measures. We choose the measure as our fundamental unit of recognition since the interpretation
of accidentals requires the entire measure context (accidentals carry through the measure), while the time
signature constraint (the sum of note lengths in a measure equals the time signature) also figures prominently
in our approach.

The focus for our core recognition engine is on the most essential musical symbols of the measure. We refer
to these as the “what” symbols, expressing timing and pitch information (stems, note heads, beams, flags,
accidentals, clefs, augmentation dots, ledger lines, rests, tuplet numbers, and ties). The remaining symbols
are mostly concerned with the manner of performance (articulation, dynamics, text directions, (de)crescendi,
etc.) though this distinction breaks down in some cases. Our approach builds specialized recognizers for the
various objects we seek by capitalizing on the essential grammatical relations that give rise to the symbols’
meaning. For instance, a beamed group must alternate between note stems and beams as one traverses the
structure from left to right, with occasional partial beams interspersed. We begin by developing explicit
grammars for the possible presentations of the “composite” symbols (isolated chords and beamed groups)
which are formed of the “primitive”symbols of stems, note heads, flags, beams, and ledger lines. While a
deeper discussion is beyond the scope of this document, such grammatical representations form the heart
of the recognition strategies employed in speech and OCR by constraining the possible recognized results
to configurations that make sense. For instance, flags must be “bound” to stems, which must be bound
to note heads, while ledger lines can only appear in a well-defined arrangement for notes that lie off the
staff. This measure analysis phase begins by identifying plausible candidate locations through inexpensive
computations, then performing more thorough “grammatical”searches of these candidates, Thus, the search
proceeds “bottom-up” — that is, by looking for composite symbols without yet formulating reasonable ways
in which these symbols can fit together at, say, the measure level. The recognition literature includes a great
deal of discussion on the relative virtues of bottom-up and “top-down” strategies, with our grammatical
approaches falling into the latter category. In short, bottom-up schemes are more computationally tractable,
while top-down approaches are more principled and function better when they are feasible.

A more scientific description of this work can be found in our recent paper: published in the proceedings
of the International Symposium on Music Information Retrieval (ISMIR, 2011):

http://www.music.informatics.indiana.edu/papers/ismir11/ismir omr.pdf.

2.2.2 Resolving Overlapping Configurations

The result of our initial bottom-up phase produces a collection of possible objects for each measure. Our
principal concern in this phase is to identify nearly every existing core object in the measure, while we accept
that this goal must also produce a number of unwanted objects as well. That is, we are willing to accept a
number of “false positives” as long as the “false negatives” are rare. The result is a collection of overlapping
object hypotheses that share “body parts” in mutually inconsistent ways. Our next phase seeks variants of
these recognized objects such that the variants do not overlap; this may involve discarding some of the objects
completely. We accomplish this goal by identifying the “regions of conflict,” where several hypotheses lay
claim to a certain portion of the image. For each such conflict we allow the relevant hypotheses to compete
for the shared region. We re-recognize each hypothesis, subject to the constraint that it must avoid the
region of conflict. We then seek the best-scoring collection of constrained and unconstrained hypotheses,
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grouped in such a way that the final collection contains no overlap. A more detailed discussion of this work,
as well as our core symbol recognizer, is presented in the paper referenced above.

2.2.3 Training

The biggest payoff for OMR will come from machine-printed notation, since such scores exist for a great
variety of classical music while this version of the problem is much more tractable than its hand-written
cousin. Machine-printed notation is characterized by a high degree of variation in the presentation of symbols
between documents, with quite limited variation of symbols within a document. For example, there may be
many different pixel configurations that correspond to a sharp sign throughout the entire IMSLP corpus,
but within a single document one should expect usually minor variations on one or two basic templates.
This allows the OMR system to “adapt” to the particular document at hand. Such automatic adaptation
is commonplace for speech recognition systems, which can improve the recognition for a particular speaker
using machine learning techniques. These tools should produce even better results with machine-printed
OMR.

At present, our system has a simple-minded interface that allows the user to identify mistakenly recognized
symbols by clicking on images such as those of Figure 1. The remaining symbols can be taken as correct
examples, which our system uses to automatically adapt. We perform two kinds of training: parametric
and template-based. Symbols such as note heads are represented either as single ellipses or, in the case
of “whole” and “half” note heads, white ellipses within black ellipses. For objects such as these we have
automatically learned the “parameters” of the ellipses, such as major and minor axes as well as orientation.
For the remaining objects we identify prototypical “templates” that describe which pixels we expect to be
black, white, or somewhere in between. Both of these approaches use standard machine learning techniques.
A good part of our approach to training has already been implemented, though details remain to be filled
in and extended to the many trainable parameters we encounter. At present we have automatically learned
clefs, accidentals, note heads, rests, and ledger lines, though it is straightforward to extend these results.

2.2.4 Interpreting the Recognized Music

A final phase of measure recognition seeks to interpret the contents of each recognized measure, assign-
ing actual pitches and rhythms to each recognized note, with rhythm providing the biggest challenge. In
monophonic music, understanding the rhythm is straightforward when the recognition is correct: each note
begins where its predecessor leaves off. However, rhythm interpretation becomes more complex when mul-
tiple voices appear in a single measure, as each note’s predecessor is not as easy to identify. In this case
one needs to partition the notes into voices, thus establishing monophonic streams of notes. Complicating
voice partitioning, the number of voices commonly varies within the measure, as when two voices begin or
end with a shared rest. Furthermore, rhythmic ambiguities also result from conventions regarding beamed
groups in which it is common to leave out the “tuplet” numbers when the meaning is obvious (to a human).
While this problem of rhythm interpretation, involving understanding of voices, clearly presents formidable
obstacles, it must be solved if to understand the rhythmic context of a measure. However, there is further
benefit, since the problem dovetails with the symbol recognition problem, discussed above, in an potentially
fruitful manner, as follows.

After symbol recognition has been performed we are often left with multiple possible hypotheses for each
identified symbol: perhaps a particular note may have one, two or no flags bound to it with scores given
to these possible interpretations. We pose the rhythm interpretation problem as one that examines the
notes of a measure, left to right (breaking ties arbitrarily), assigning the notes to voices, with a variable
number of voices as the measure evolves. Using classic techniques from dynamic programming, it is possible
to examine and score all possible such label sequences in a computationally tractable manner. While doing
this, we consider multiple rhythmic interpretations for each note, weighted by their scores from the previous
recognition phase. Dynamic programming then identifies the best-scoring interpretation that is consistent
with the time signature. While this phase has been has been carefully formulated “on paper, we have just
begun the actual implementation of this approach. Preliminary results will follow soon.
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Figure 1: Example of recognition on page from Mozart Clarinet Quintet, K.581.

2.3 Evaluation

Here we first present a few examples and experimental results designed to convey our current level of success.
Clearly we have both accomplished quite a bit and have a long way to go.

Figure 1 shows a system from the 2nd movement of the Mozart Quintet for Clarinet and Strings, K. 581,
as recognized by our OMR program. This system has a number of complex beamed groups as well as variety
of accidentals. The image has been colored so that blue denotes recognized “black” pixels, while red denotes
recognized “white” pixels. Thus, any symbol colored as black has not been identified by our system, while
any significant amount of red represents blank space that has incorrectly been recognized as something. It
is easy to identify errors in this example, such as the missed 32nd rests (we don’t yet even look for these),
as well a couple of missed natural signs. We believe this example to be more or less representative of our
current level of success, containing quite a bit that is correctly identified.

Figure 2 “zooms in” to show a number of errors in greater detail. These were chosen by hand as they
represent syndromes of mistakes our recognizer makes, rather than isolated problems. A number of the errors
are due to “out-of-vocabulary” problems, in which the actual symbol is not among those we currently seek.
For instance, the example in the 3rd row and 1st column, (3,1), shows a double sharp that was misrecognized
since we do not yet look for this unusual symbol. As slurs are also not yet in our vocabulary, the large amount
of black ink they present tempts our recognizer to identify slurs as “known” objects, as in example in position
(3,4). The best general antidote to this issue is to add the symbol in question to the vocabulary, since this
allows for a competing hypothesis that will likely fit the image data better. However, in OMR one should
always expect a certain number of out-of-vocabulary symbols, since, as discussed above, adding rare symbols
to the recognizer will result in these symbols being identified in unwanted locations. Thus the majority of
slurs that have not been recognized as something should be regarded as successes.

Example (4,2) shows a staff line that has been mistaken for a partial beam; this kind of mistake results
from the difficulties of handling occlusion in recognition, since the domain of the partial beam is hidden by
the staff line. We hope to correct this kind of error through better training of our models. Finally, example
(4,3) shows a misrecognized augmentation dot; this happens frequently due to the smallness of these symbols,
hence the “small sample size effect” familiar from statistics. Both of these latter mistakes will be addressed
through the interpretation phase of our recognition procedure, discussed above but not yet implemented.

Table 2.3 gives a numerical description of our results on the first 5 pages from the Beethoven Ro-

mance # 2 for Violin and Orchestra. Pictures of the results in the manner shown above can be found
at http://www.music.informatics.indiana.edu/papers/ismir11. In this experiment we hand-marked the pages
identifying the locations of all primitive symbols in the image, using a simple program developed for this
purpose by PhD student Jingya Wang. We then scored our recognition results for each primitive in terms of
the “false positives” — the identified symbols that were not in fact true symbols, and the “false negatives”
— the true symbols that were simply missed.

It should be stated that this kind of evaluation misses the mark in an important way since we are
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Figure 2: Examples of various misrecognized measures.

not measuring the accuracy of the resulting symbolic results — e.g. how many notes from the score do we
recognize at the correct time with correct pitch, but rather the accuracy of an intermediate symbol recognition
stage. The OMR literature contains quite a bit of discussion of this issue, and it is widely acknowledged
that evaluation of fully symbolic output is complex without obvious solutions, or even good candidates. For
instance, a missed clef change results in mistaken pitches for all subsequent notes in the voice, though it
doesn’t seem reasonable to evaluate in so harsh a manner. However, the intermediate evaluation we have
performed is rather obviously related to the eventual symbolic results we will produce, and is simple (though
labor-intensive) to perform and interpret.

It has been noted by many OMR authors that results can be very difficult to compare, as there is very
little in the way of standard test sets with associated ground-truth. However, the false negative/positive
error rates we present are in line with those reported in the academic literature for commercial systems.

3 Ongoing and Future Goals

The challenge posed by OMR is not one that can be solved in the space of a year or two. However, the
potential benefits are significant, far-reaching, and lasting, more than justifying the decade-long effort we
anticipate. What follows is a discussion of several aspects of OMR that fit into our ongoing vision, though
remain undeveloped. We take this opportunity to formulate our thoughts and plans, though they remain
subject to revision.

3.1 Symbolic Representation

The goal of OMR is, of course, to produce symbolic music representations — descriptions that express
music in terms of notes with discrete pitch and length for each note, along with a wide variety of other
information such as articulations, dynamics, repeat structure, ornaments, pedaling, etc. Symbolic music
representations are somewhat well-studied, while the symbolic community offers several established and
nearly complete encodings to choose from, such as MusicXML and the Music Encoding Initiative (MEI).
Thus, it is not necessary to construct a new encoding scheme for OMR. Rather, the important issue is to
decide what aspects of the music should be captured in the encoding. Naturally, this choice depends on
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symbol name False + False -

solid note head .04 74/1724 .04 68/1718
note stem .02 29/1573 .06 90/1634
ledger line .07 51/701 .06 43/693
2 beam .11 35/312 .04 13/290
1 beam .23 76/331 .08 23/278
aug. dot .52 252/481 .14 36/265
8th rest .03 7/242 .04 10/245
3 beam .04 6/138 .15 24/156
single flag down .00 0/92 .36 51/143
whole rest .21 28/132 .10 12/116
flat .07 8/107 .05 5/104
quarter rest .01 1/92 .10 10/101
open note head .28 25/88 .29 26/89
single flag up .02 1/50 .34 25/74
natural .14 7/50 .30 18/61
treble clef .00 0/60 .00 0/60
sharp .36 21/58 .16 7/44
16th rest .04 1/24 .21 6/29
bass clef .00 0/20 .00 0/20
triple flag down .43 9/21 .20 3/15
triple flag up .59 13/22 .10 1/10
alto clef .00 0/10 .00 0/10
4 beam .33 1/3 .00 0/2
double flag up - 0/0 1.00 1/1
double flag down 1.00 3/3 - 0/0
total .10 648/6325 .07 472/6158

Figure 3: Error rates in terms of both “false positives” and “false negatives” for the symbols considered in
the Beethoven Violin Romance #2 experiments.
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the ease which which such aspects can be accurately understood from the document. Many fine details of
symbolic representation, such as the beam grouping of notes and the directions of stems, come nearly for
free from our OMR approach since we must recognize this detail to achieve the most basic understanding of
the document’s content. We plan to embed all such “free” information into our symbolic representation.

Whatever niceties one thinks a symbolic representation ought to have, the core pitch and rhythm content
are certainly indispensable for most purposes; one cannot even play the music back without this understand-
ing. Unfortunately, rhythm interpretation does not come for free from OMR, due to complexities involving
voices and missing tuplet numbers. We discussed a strategy for understanding the rhythm of a measure in
section 2.2, based on the idea of partitioning the notes into voices and using the time signature constraint to
help choose among plausible hypotheses. This is our plan for recovering this vital rhythmic data. It should
be mentioned that the identification of pitch is not completely straightforward, especially in large ensemble
scores where one must know the transposition associated with each staff line.

Given the grand challenge presented by the OMR problem, it makes sense to pare the problem down
whenever possible. Other than pitch and rhythm, we are inclined not to include any aspect of the score
interpretation that do not come for free as a byproduct of OMR. An example of this is the distinction
between slurs, ties, and phrase marks, all indicated with the same symbol, but whose meaning is often
unclear and the subject of debate. Other examples would be the rhythmic interpretations of grace notes,
when measured, or issues involving the execution of ornaments. As a general principle, we will choose not
to interpret symbols except when necessary to achieve the most basic pitch/rhythm understanding of the
music content. Refining this notion of “most basic” will depend on ongoing study, and the ease with which
certain aspects of musical meaning can be easily recognized from the OMR results.

3.2 User Interface

A basic tenet of our approach, held from the onset of this project, is that recognition by itself will not be
enough to “solve” the OMR problem. While the core recognition problem (the “what” symbols) is somewhat

well-defined, this core has been extended in many different directions over several centuries. The result is the
“heavy-tailed” nature of music notation, with a great many symbols that occur infrequently. Furthermore,
from the vantage point of recognition science, it is mistake to try to continually broaden the range of special
cases that the OMR system can accommodate — many of these situations are rare and would result in
unwanted identification of rare symbols where they don’t belong. (We really don’t want to find mordants
within Tristan und Isolde!) Our proposed solution is to limit the extent of what we try to accomplish with
recognition alone, augmenting this by human input that corrects, directs, and otherwise aids the system.

At present we have only begun considering the way the user interface (UI) could combine human oversight
with core recognition technology. For example, our current UI allows a user to delete various misrecognized
symbols, simply by clicking on them, so they do not pollute the adaptation process with incorrectly labeled
symbols. This is an example where it is particularly easy for the user to supply the needed input: “we want
this flat here and we don’t want this natural there.” There are other examples where simple-minded UI
approaches like this one may prove fruitful, while the demands of such cases can be satisfied by an “OMR
editor” which allows the user to make such corrections. In essence, any isolated symbol or group of symbols
whose meaning can be simply expressed by a user is a candidate for such an approach. For instance, the
user could draw a bounding box around some text and type in its contents, or similarly identify the location
of an accidental and label it by choosing from a menu. Given this user-supplied information, it is relatively
easy to match the raw pixel data to the known interpretation, while this result can be displayed in the UI
by coloring the recognized pixels as in Figure 1. The user would proceed in this way, both by looking at the
recognized results and playing them back through editor until the result is satisfactory.

Approaches like are essential for cleaning up the detritus left by a recognition pass, but only go so far. In
many cases, the information that recognition fails to provide is more complex than the isolation and labeling
of a single symbol. Often the problem lies not in merely identifying a symbol or primitive, but also specifying
relationships: this accidental belongs to this note head, which belongs to this stem, which belongs to this
beam. We will explore the development of a UI that allows the user to express such relationships, though
the result will be more difficult and time-consuming to user.

A better approach may be to allow the user to supply missing bits of information, while re-recognizing
subject to these user-generated constraints. For instance, if the user identifies the correct label for a single
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pixel, say as part of a triple flag, we can then reexamine the offending region in a way that is consistent that
the user’s labeling. One virtue of such an approach is that all of the internal relationships and dependencies
that eventually give rise to the musical meaning are embedded in the resulting recognition. Another virtue
is that the knowledge of the contents of one part of a measure can, as described in Section 2.2.4, be used
to aid the recognition and interpretation of different parts of a measure. There seems to be considerable
potential in such ideas, and certainly a great challenge in developing them.
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